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Abstract

This paper presents an exact analysis of the problem of a penny-shaped crack in a transversely isotropic

piezoelectric medium subjected to arbitrary shear loading that is antisymmetric with respect to the crack plane. The

analysis is based on the general solution of three-dimensional piezoelasticity, which is represented by four quasi-

harmonic displacement functions. It is shown that these harmonics can be represented by one complex potential. By

using the previous results in potential theory, an exact solution is obtained. In particular, for uniform shear and

point shear loadings, complete expressions for the elastoelectric ®eld are derived in terms of elementary

functions. # 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Transverse isotropy; Piezoelectric material; General solution; Potential theory; Penny-shaped crack; Antisymmetric load-
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1. Introduction

Piezoelectric materials play key roles as active components in technologies such as infranics, naviga-

tion, and electrics, etc. because of their particular coupling e�ect between elastic deformation and electric

®eld. Due to the inherent brittle weakness of piezoelectric ceramics, the fracture of piezoelectric materials

has gained considerable interest. Most available theoretical works are concerned with the two-dimen-

sional study of cracks in piezoelectric materials, see Pak (1990), Sosa (1992), Suo et al. (1992), Park and

Sun (1995), Zhang and Tong (1996), Zhong and Meguid (1997), etc. There are comparatively few works

of three-dimensional analysis (Deeg, 1980; Sosa and Pak, 1990; Wang, 1992; Huang, 1997; Chen and
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Shioya, 1999). In particular, for a penny-shaped crack in a transversely isotropic piezoelectric medium,

Kogan et al. (1996) derived the exact solutions for axisymmetric and antisymmetric far ®eld uniform

loadings from those of a spheroidal piezoelectric inclusion as a limiting case.

It is noted that for transversely isotropic elastic materials, signi®cant results have been newly devel-

oped by Fabrikant (1989) for the application of potential theory in analyzing contact and crack pro-

blems in elasticity. Using the new results, Fabrikant (1989) has showed that an exact solution of a

penny-shaped crack can be obtained for antisymmetric shear loading. In particular, for both uniform

and point shear loadings, complete solutions can be derived in terms of elementary functions.

In this paper, we intend to use the results of Fabrikant (1989) to analyze a penny-shaped crack in a

transversely isotropic piezoelectric medium subjected to arbitrary shear loading that is antisymmetrically

applied to the upper and lower crack faces. To this end, the recently proposed general solution to the

coupled equations for transversely isotropic piezoelectric solids is employed (Ding et al., 1996, 1997).

The general solution is expressed in terms of four quasi harmonics, which can be represented only by

one complex potential. It will be shown that the satisfaction of the boundary conditions ®nally leads to

an integro±di�erential equation that has an identical structure to the one for elasticity. The only di�er-

ence is the de®nition of the involved material constants, which has no e�ect on the form of the solution.

Thus, the results presented in Fabrikant (1989) can be utilized to obtain the exact solution of the pro-

blem. Especially, for two loading cases, i.e. uniform shear and point shear loadings, complete solutions

are exactly derived in terms of elementary functions. The present results for the uniform loading are

compared with those available in the literature (Kogan et al., 1996) and good agreement is observed.

It is also noted here that by using the recent results presented in Fabrikant (1996a, 1996b), a complete

solution can also be obtained for an external circular crack in a transversely isotropic medium subjected

to arbitrary shear loading.

2. Basic equations for piezoelasticity and the general solution

The piezoelastic governing equations of a transversely isotropic piezoelectric medium can be found in

Tiersten (1969). In Cartesian coordinates (with the z-axis being normal to the plane of isotropy, i.e. the

x±y plane), these equations can be rewritten in a complex form, by introducing the tangential complex

displacement U=u+ iv, as follows,
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where, D=@
2/@x 2+@

2/@y 2, L=@/@x+ i@/@y, and the overbar indicates the complex conjugate value. (u,

v, w )T and F are displacement vector and electric potential, respectively. cij, Eij and eij are the elastic,

dielectric, and piezoelectric constants, respectively. The general solution of Eq. (1) proposed by Ding et

al. (1997) is also rewritten in a complex form:
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4 � c66=c44 and s2i (i= 1, 2, 3) are roots of the following algebraic equation:
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It is noted here that the general solution given in Eq. (2) is only valid for distinct s2i while, for other

cases, di�erent forms should be adopted (Ding et al., 1997; Chen, 2000), see Appendix A. It is also
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required that Fi(z ) should satisfy the following quasi harmonic equation 
D� @2
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!
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By virtue of the linear constitutive relations of a piezoelectric body [see Eq. (1) in Ding et al. (1997)],

the following expressions for stresses si(tij ) and electric displacements Di can be derived:
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where, s1=sx+sy, s2=sx ÿ sy+2itxy, tz=txz+ityz and D=Dx+iDy. In addition,

g1i � ÿc13 � c33siai1 � e33siai2

and

g2i � ÿe31 � e33siai1 ÿ E33siai2:

It is noted that the following identities have been employed in Eq. (7):

g1isi � c44�si � ai1� � e15ai2

and

g2isi � e15�si � ai1� � E11ai2: �8�
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3. The potential theory method for antisymmetric crack problem

It is ®rstly considered that a transversely isotropic piezoelectric solid of in®nite extent is weakened by

a ¯at crack S in the plane z= 0. The crack is subjected to arbitrary shear loading that is antisymmetric

with respect to the crack plane. The problem can, in fact, be described as a mixed boundary value pro-

blem of a half-space zr0, with the following boundary conditions on the plane z= 0:

tz � ÿt�x,y�, for �x,y� 2 S,

U � 0, for �x,y� =2 S

and

sz � Dz � 0, for ÿ1<�x,y�<1: �9�

Similar to the pure elasticity (Fabrikant, 1989), Eq. (9) can be satis®ed by a representation of the gen-

eral solution in terms of one complex harmonic function F, namely,
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where ci (i= 1, 2, 3, 4) are undetermined constants and

F�r,f,z� �
� �

S

ln�R�M,N � � z�U�N �dSN, �11�

where R(M,N ) is the distance between two points M(r,f,z ) and N(r,c,0), N $ S, and the integration is

taken over the crack domain S. Hereafter, the cylindrical coordinates (r,f,z ) are alternatively used for

the sake of convenience. By assuming

X3
i�1

cig1i � 0

and

X3
i�1
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the third condition in Eq. (9) is identically satis®ed. It can be further veri®ed that the second condition

in Eq. (9) can be satis®ed if

X3
i�1

ci � ic4 � 0

and
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The combination of Eqs. (12) and (13) yields:
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Substituting Eq. (10) into Eq. (7) gives the expression of tz for z= 0 as
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Now noticing the ®rst condition in Eq. (9), the following integro±di�erential equation is obtained:

t�N0� � ÿ 1

2p2
ÿ
G 2

1 ÿ G 2
2

�
"
G1D

� �
S

U�N �
R�N,N0�dSN � G2L

2

� �
S

�U �N �
R�N,N0�dSN

#
, �16�

where N0, N $ S and
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Here, two new material constants G1 and G2 are introduced so as to make the resulting integro±di�eren-

tial equation Eq. (16) have exactly the same form as that for elasticity (Fabrikant, 1989). Such an

equation has been solved for a penny-shaped crack in transversely isotropic elastic media. Therefore, the

results obtained by Fabrikant (1989) can be used to obtain the exact and complete solutions for a

penny-shaped crack in piezoelectric materials.

4. The complete solutions for a penny-shaped crack

In the case that the crack is penny shaped, utilizing the results of Fabrikant (1989), we can directly

write down the solution of Eq. (16) as
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where a is the radius of the crack and
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By substituting Eq. (18) into Eq. (11) and these, in turn, into Eqs. (2) and (7), exact expressions for

the elastoelectric ®eld can be derived. It is noted that for the point loading and the uniform loading

cases, Fabrikant (1989) has derived the elastic solutions in terms of elementary functions. Similar to his

derivations, we can also obtain the corresponding ones for piezoelectric materials. Details are however

omitted, and the solutions are given in the following.

4.1. Uniform shear loading

Denote the uniform shear loading as t0 � t0xz � it0yz, where t
0
xz and t0yz are constants. By virtue of the

results presented in Fabrikant (1989), we obtain the following expressions for the elastoelectric ®eld:
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Here l1;2 � f��r� a�2 � z2�3��rÿ a�2 � z2�1=2g=2.
The expressions presented in Eq. (20) degenerate identically to those for elasticity if the electric e�ect

is neglected. However, there are some misprints in Fabrikant (1989): factor 2 should be dropped in Eq.
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(4.6.2), the coe�cient in Eq. (4.6.3) should read mk/(mkgk ÿ gk ) rather than mk/(mk ÿ 1), and the second

term of the right side of Eq. (4.6.10) should be divided by r.

De®ning the complex stress intensity factor, as follows

KII � ikIII � lim
r4a

n
�rÿ a�1=2eÿiftzvz�0

o
, �22�

where kII and kIII actually correspond to the mode II and mode III intensity factors of a penny-shaped

crack, respectively. Noticing the following property:

l1i4min �a,r� and l2i4max �a,r�, when z � 0, �23�
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4.2. Point shear loading

It is now supposed that the crack is subjected to a pair of concentrated shear forces T=Tx+iTy that

are applied to the crack faces antisymmetrically at the points (r0, f0, 0
2), r0 < a. Using Fabrikant's

results (Fabrikant, 1989), we obtain the following expressions for the elastoelectric ®eld:
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where f1±f5 are given in pages 235±236 and f7±f16 are given in pages 247±249, respectively, in Fabrikant

(1989). To save space in this paper, they are not repeated here. It is noted here that these expressions

are all in terms of elementary functions, that is to say, the solution of a penny-shaped crack in a trans-

versely isotropic piezoelectric medium subjected to point shear loading is exactly obtained in elementary

functions.

Eq. (26) gives tz at z= 0 for r>a:
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where f3(0) and f15(0) can be calculated from Eqs. (4.2.9) and (4.4.50), respectively, in Fabrikant (1989),

as follows
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The complex stress intensity factor de®ned by Eq. (22) can thus be obtained for point loading as fol-

lows:
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ÿ
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It can be shown that the complex intensity factor here has an identical form to that for elasticity, see

Eq. (4.4.58) in Fabrikant (1989). It is pointed out that Eq. (4.4.58) there contains a minor misprint, i.e.

the symbol r in the denominator of the ®rst term should be r0. The corresponding intensity factor for

an arbitrarily distributed loading can obviously obtained by integrating Eq. (29):

kII � ikIII � 1

p2
�����
2a

p
�2p
0

�a
0

ÿ
a2 ÿ r20

�1=2( eÿift�r0,f0�
r20 � a2 ÿ 2ar0 cos�fÿ f0�

� G2

G1

ÿ
3aÿ r0e

i�fÿf0�
�
eif �t �r0,f0�

a
ÿ
aÿ r0e

i�fÿf0�
�2

)
r0 dr0 df0:

�30�

For example, utilizing the following integrals:

�2p
0

�a
0

�a2 ÿ r2�1=2
a2 � r2 ÿ 2ar cos f

r dr df � 2pa

and

�2p
0

�a
0

�a2 ÿ r2�1=2�3aÿ reif�
�aÿ reif�2 r dr df � 2pa2, �31�

the complex intensity factor for a uniform loading, i.e. Eq. (25), is reproduced.

As a numerical example, we consider here the distributions of the shear displacements u and v at the

crack face, i.e. at z= 0, r< a, due to the concentrated shear force T applied at the point (r0, f0, 0),

r0 < a. This is of practical interest because u and v at the crack face are directly related to the relative

slip displacements in the modes II and III crack problems. The expression of the complex displacement

at z= 0 for r< a corresponding to T can be directly obtained from Eq. (18) as

U�r,f,0� � G1

p

"
1

R
tanÿ1

�
Z

R

�
ÿ G 2

2

G 2
1

�3ÿ �t�Z
a2�1ÿ �t�2

#
T� G2

p

"
q

R �q
tanÿ1

�
Z

R

�
� Z�q= �q ÿ tei2f0 �

a2�1ÿ t��1ÿ �t �

#
�T : �32�

Table 1

Values of G1 and G2 for di�erent piezoelectric materials

Materials References G1 (10
ÿ12 m2/N) G2 (10

ÿ12 m2/N)

PZT-4 Dunn and Taya (1994) 8.6144 2.7585

PZT-5 Dunn and Taya (1994) 10.798 3.7142

PZT-7A Dunn and Taya (1994) 8.0470 2.4941

BaTiO3 Dunn and Taya (1994) 6.1322 1.2724

PZT-6B Wang and Zheng (1994) 6.8817 1.4392
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Fig. 1. Distribution of the nondimensional shear displacement u0 at the penny-shaped crack face due to the shear stress Tx applied

at (0.5a, 0, 0).

Fig. 2. Distribution of the nondimensional shear displacement v0 at the penny-shaped crack face due to the shear stress Tx applied

at (0.5a, 0, 0).
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It can be seen that only two material constants, G1 and G2 are involved in Eq. (32). Table 1 gives

their values for several piezoelectric materials.

For a numerical example, the concentrated shear force T is assumed to be applied along the x-axis at

the point (0.5a, 0, 0) so that we have T � �T � Tx in Eq. (32). The distributions of the nondimensional

shear displacements u0=au/(G1T ) and v0=av/(G2T ) at the crack face are displayed in Figs. 1 and 2, re-

spectively. The piezoelectric material is assumed to be PZT-4, for which the ratio between G1 and G2 is

a=G2/G1=0.3202. The singularity of the shear displacement u0 at the point the concentrated shear

force is applied is clearly shown in Fig. 1.

5. Veri®cation of the present method

Kogan et al. (1996) have derived exact solutions of a penny shaped crack subjected to axisymmetric

as well as antisymmetric far ®eld uniform loadings using a limiting procedure from the solutions of an

elliptical inclusion problem. Now for antisymmetric uniform loading, we can compare our results with

those obtained by them. Let us check the expression for the shear stress txz at z= 0, f=0 for r>a

when the crack is subjected to an out-of-plane uniform shear loading t0xz applied at in®nity. By using the

theorem of superimposition, Eq. (24) gives the expression of txz at z= 0, f=0 for r>a due to t0xz as

follows

txz � tzvz�0 � t0xz �
2

pG1

(
G1

�
a

�r2 ÿ a2�1=2 ÿ sinÿ1
�
a

r

��
� G2

a3

r2�r2 ÿ a2�1=2
)
t0xz: �33�

The above equation is further converted to the following form

txz � t0xz

(
2a

p�r2 ÿ a2�1=2 �
2

p
tanÿ1

�
�r2 ÿ a2�1=2

a

�
� 2a3

pr2�r2 ÿ a2�1=2

)

� 2�G2 ÿ G1�t0xz
pG1

a3

r2�r2 ÿ a2�1=2 :
�34�

On the other hand, Eq. (38) in Kogan et al. (1996) reads (in our notation),

tKogan et al:
xz � t0xz

(
2a

p�r2 ÿ a2�1=2 �
2

p
tanÿ1

�
�r2 ÿ a2�1=2

a

�
� 2a3

pr2�r2 ÿ a2�1=2

)

� i6s4c44A4

a3

r2�r2 ÿ a2�1=2 ,
�35�

where A4 and other three constants, Ai (i= 1, 2, 3), are determined by Eq. (37) in Kogan et al. (1996),

which are also rewritten as follows:

X3
i�1

g1iAi � 0,
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X3
i�1

g2iAi � 0,

X3
i�1

g1isiAi

,
c44 � A4s4 � ÿt0xz

��
3

2
c44pi

�

and

X3
i�1

Ai � A4, �36�

It is seen that if

2�G2 ÿ G1�t0xz
pG1

� i6s4c44A4, �37�

Eqs. (34) and (35) are identical. Because Ai=A4Ci (i= 1, 2, 3), the third equation in Eq. (36) becomes

1

H
� 1

b
� ÿ 4t0xz

3A4i
, �38�

which ®nally leads to Eq. (37). Thus we have proved txz � tKogan et al:
xz . Kogan et al. (1996) also derived

the modes II and III intensity factors due to t0xz, as follows

�kII � ikIII�Kogan et al: �
����
a

2

r
1

p

ÿ
4t0xz cos f� i6s4c44A4pe

if
�
: �39�

By virtue of Eq. (37), it is easy to verify that Eq. (39) is in agreement with Eq. (25).

6. Conclusions

By employing the potential theory method as well as the recently proposed general solution, the pro-

blem of a penny-shaped crack in a transversely isotropic piezoelectric medium subjected to antisym-

metric shear loading has been analyzed exactly. Complete and exact expressions for the elastoelectric

®eld are presented for the crack subjected to uniform as well as point shear loadings. The complex stress

intensity factors (mode II and mode III) are also derived in an exact manner. Numerical results are pre-

sented for point shear loading case that show clearly the singularity of shear displacement u at the point

where the concentrated shear force T=Tx is applied.

The correctness of the present results and the e�ectiveness of our method are demonstrated in the

paper by comparing the results for the uniform loading with those obtained by Kogan et al. (1996).

It is worth pointing out here again that the general solution shall take other forms for equal eigen-

values. The succeeding derivations are similar to what have been described above (see Appendix A).

However, as pointed out by Fabrikant (1989), one can also derive the corresponding results of equal

eigenvalues directly from the ones of distinct eigenvalues, by utilizing the well-known L'Hospital rule.

Recently, Fabrikant (1996a, 1996b) also derived a complete solution of the problem of an external cir-

cular crack in a transversely isotropic elastic material subjected to arbitrary shear loading. As what have
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been done in this paper, it is not di�cult to use his results to obtain the corresponding complete solution

for transversely isotropic piezoelectric materials.
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Appendix

The general solutions for cases of multiple roots of si (i= 1, 2, 3) are also expressed in terms of

quasi-harmonic functions Fi (i= 1, 2, 3, 4) that satisfy Eq. (6). They can be rewritten in the following

complex forms (Ding et al., 1997; Chen, 2000):

Case (1): s1$s2=s3

U � L�F1 � F2 � z2F3 � iF4�,

w � a11
@F1

@z1
� a21

@F2

@z2
� a21z2

@F3

@z2
� a41F3

and

F � a12
@F1

@z1
� a22

@F2

@z2
� a22z2

@F3

@z2
� a42F3, �A1�

where

a41 �
2
ÿ
2c44E33s

2
2 ÿm3

�
s2 ÿ

ÿ
m1 ÿ 3m2s

2
2

�
a21

m1 ÿm2s
2
2

and

a42 �
2
ÿ
2c44e33s

2
2 ÿm4

�
s2 ÿ

ÿ
m1 ÿ 3m2s

2
2

�
a22

m1 ÿm2s
2
2

:

Case (2): s1=s2=s3

U � L

�
F1 � z1F2 � z21

@F3

@z1
� iF4

�
,

w � a11

 
@F1

@z1
� z1

@F2

@z1
� z21

@2F3

@z21

!
� a41

�
F2 � 2z1

@F3

@z1

�
� a51F3

and
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F � a12

 
@F1

@z1
� z1

@F2

@z1
� z21

@2F3

@z21

!
� a42

�
F2 � 2z1

@F3

@z1

�
� a52F3, �A2�

where

a51 �
2
�
3m2�a11 � a41�s21 ÿm1a41 �

ÿ
6c44E33s

2
1 ÿm3

�
s1
�

m1 ÿm2s
2
1

and

a52 �
2
�
3m2�a12 � a42�s21 ÿm1a42 �

ÿ
6c44e33s

2
1 ÿm4

�
s1
�

m1 ÿm2s
2
1

:

For Case (1), we assume

Fi�z� � ci
�
L �F �zi � � �LF�zi �

�
, �i � 1,2�

F3�z� � c3
�
L �G �z3� � �LF�z3�

�
and

F4�z� � c4
�
L �F �z4� ÿ �LF�z4�

�
, �A3�

where F has been given by Eq. (11) in the paper, and,

G�r,f,z� �
� �

S

U�N �
R�M,N � dSN: �A4�

For Case (2), we assume

F1�z� � c1
�
L �F �z1� � �LF�z1�

�
,

Fi�z� � ci
�
L �G �zi � � �LG�zi �

�
, �i � 2,3�

and

F4�z� � c4
�
L �F �z4� ÿ �LF�z4�

�
: �A5�

The followed derivatives are similar to those described in the text and omitted here for the sake of sim-

plicity. In fact, for both cases, the resulting integro±di�erential equations have the same structure as Eq.

(16) except for the involved constants. Therefore, previous results in potential theory are still valid to

obtain the corresponding solutions.
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